

Data Structures and Algorithms for Information Processing

Lecture 12: Sorting

Outline

- Correctness proof digression
- Consider various sorts, analyze
- Insertion, Selection, Merge, Radix
- Upper & Lower Bounds
- Indexing

What Does This Method Compute?

The Jar Game

A jar contains n >= 1 marbles. Each is of color red or of blue. Also we have an unlimited supply of red marbles.

Will the following algorithm terminate?

From http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html

The Jar Game

```
while (# of marbles in the jar > 1) {
    choose (any) two marbles from the jar;
    if (the two marbles are of the same color)
    { toss them aside;
      place a RED marble into the jar;
    else {
       toss the chosen RED marble aside;
      place the chosen BLUE marble back
       into the jar;
http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants lec.html
```

Find A Loop Invarient

 Can we find a loop invariant that will help us to prove the following theorem:

The last remaining ball will be blue if the initial number of blue balls was odd and red otherwise.

Lecture 12: Sorting

From http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html

Intuitive Introduction

Main's slides from Chapter 12

Insertion Sort

Consider each item once, insert into growing sorted section.

```
void insertionSort(int A[]) {
    for(int i=1; i<A.length; i++)
        for(int j=i; j>0 && A[j]<A[j-1]; j--)
        swap(A[j],A[j-1]);
}</pre>
```

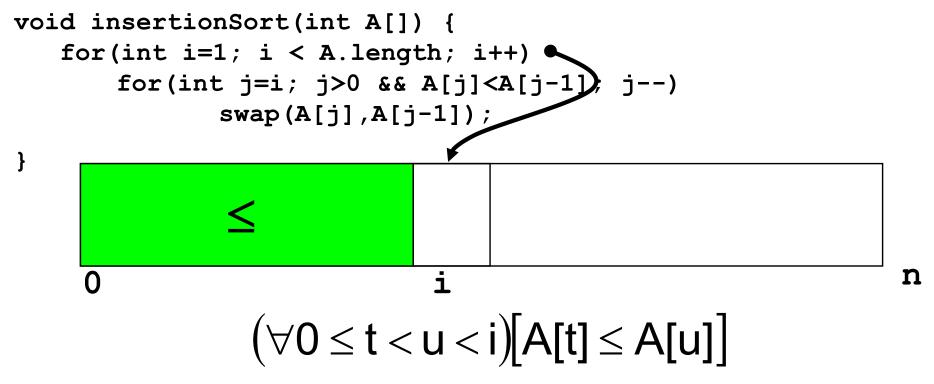
Insertion Sort

```
void insertionSort(int A[]) {
    for(int i=1; i<A.length; i++)
        for(int j=i; j>0 && A[j]<A[j-1]; j--)
        swap(A[j],A[j-1]);
}</pre>
```

- runs in $\Theta(n^2)$, where n = A.length.
- If A is sorted already, runs in Θ (n).
- Use if you're in a hurry to code it, and speed is not an issue.

Proving Insertion Sort Correct

What is the invariant?



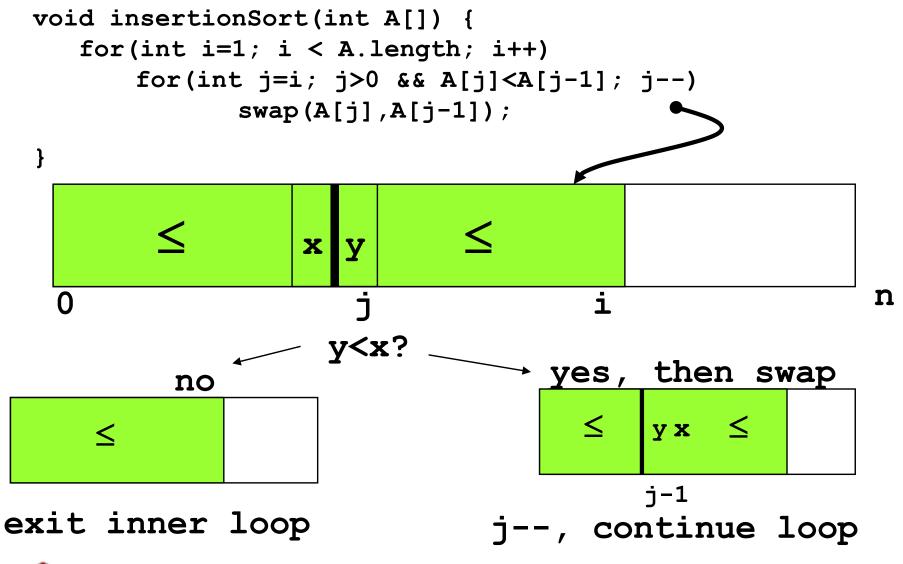
i=1, it's trivially true, When when i=n, array is sorted.

Now consider inner loop

$$\big(\forall 0 \leq t < u < j\big)\!\big[A[t] \leq A[u]\big] \wedge \big(\forall j \leq v < w \leq i\big)\!\big[A[v] \leq A[w]\big]$$

Trivially true when j=i, and implies outer loop invariant when it exits.

What happens inside inner loop?



90-723: Data Structures and Algorithms for Information Processing

What is the Average Time for Insertion Sort?

(Best is Θ (n), Worst is Θ (n²))

- Running time is proportional to number of swaps.
- Each swap of adjacent items decreases disorder by one unit where

disorder = number of i<j such that A[i]>A[j]

• Therefore running time is proportional to disorder and average running time is proportional to average disorder.

Average disorder

Sequence	disorder	Reversed Sequence	disorder
1234	0	4321	6
1243	1	3421	5
1324	1	4231	5
1342	2	2431	4
1423	2	3241	4
1432	3	2341	3
2134	1	4312	5
2143	2	3412	4
2314	2	4132	4
2413	3	3142	3
3124	2	4213	4
3214	3	4123	3
	22		50

for n=4 Average disorder = 72/24 = 3

Lecture 12: Sorting

90-723: Data Structures and Algorithms for Information Processing

What is the Average Disorder?

Theorem: The average disorder for a sequence of n items is n(n-1)/4

Proof: Assume all permutations of array A equally likely. If A^R is the reverse of A, then disorder(A) + disorder(A^R) = n(n-1)/2 because A[i] < A[j] iff $A^R[i] > A^R[j]$. Thus the average disorder over all permutations is n(n-1)/4.

Corollary: The average running time of <u>any</u> sorting program that swaps only adjacent elements is Ω (n²).

Proof: It will have to do n(n-1)/4 swaps and may waste time in other ways.

To better ⊕(n²) we must compare non-adjacent elements

Shell Sort: Swap elements n/2, n/4, ... apart

Heap Sort: Swap A[i] with A[i/2]

QuickSort: Swap around "median"

Idea of Merge Sort

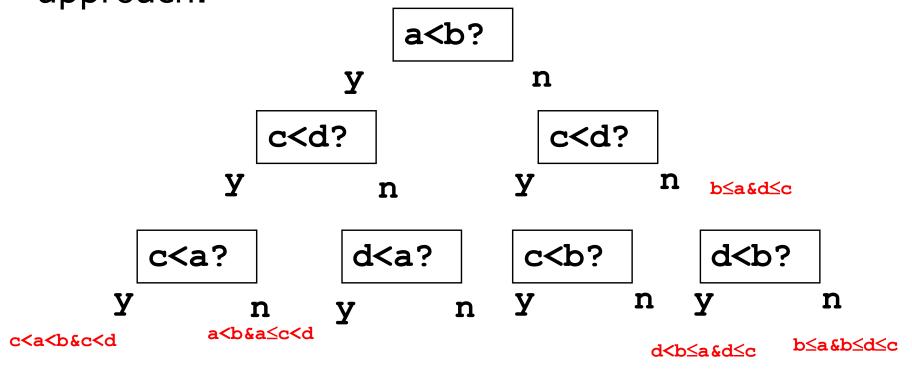
- Divide elements to be sorted into two groups of equal size
- Sort each half
- Merge the results using a simultaneous pass through each

Psuedocode for Merge Sort

```
void mergesort(int data[], int first, int n) {
 if (n > 1) {
    int n1 = n/2;
    int n2 = n - n1;
     mergesort(data, first, n1);
     mergesort(data, first+n1, n2);
     merge(data, first, n1, n2);
           90-723: Data Structures
                                       Lecture 12: Sorting
             and Algorithms for
            Information Processing
```

How fast could a sort that uses binary comparisons run?

Consider 4 numbers, a, b, c, d. Merge Sort approach:

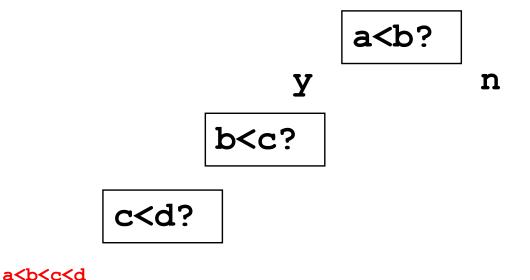


Ask only questions you don't know answers to.

a<b? У n c<d? c<d? b≤a&d≤c d<b? d<a? c<a? c<b? c<a<b&c<d a<b&a<c<d d<b<a&d<c b\leq a \& b\leq d\leq c b<c? a
b & a<c<d & c<b a<b≤c<d 4 compares b<d? a<c<b<d a≤c<d≤b

90-723: Data Structures and Algorithms for Information Processing

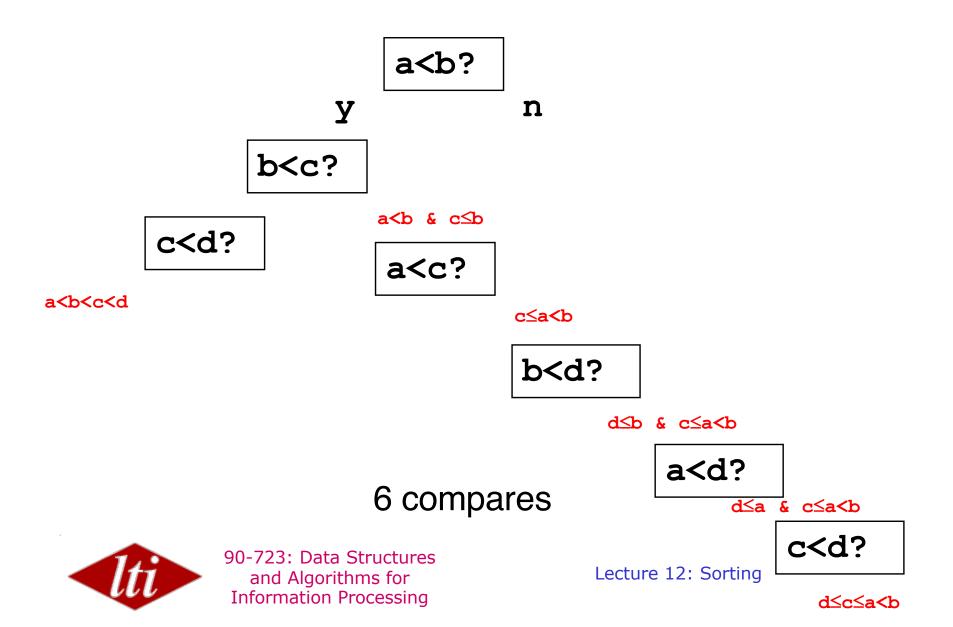
A different strategy, insertion sorts, may get lucky.



Lecture 12: Sorting

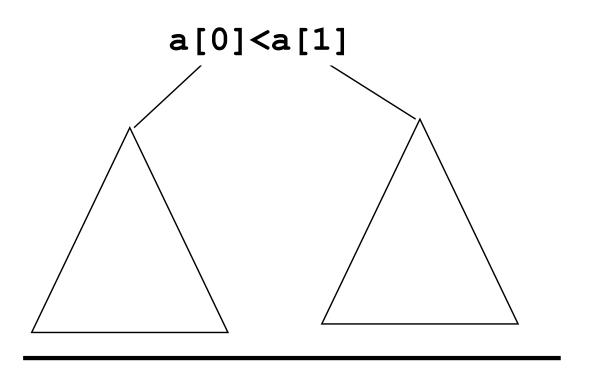
3 compares

But it may be unlucky.

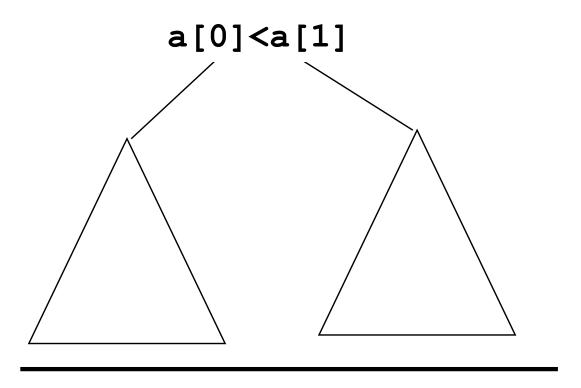


Consider all possible sorting trees.

How many leaves must a sorting tree have to distinguish all possible orderings of n items?



How many leaves must there for a sorting tree for n items?



n!, the number of different permutations.

Theorem: A binary tree with K leaves must have depth at least $\lceil \log_2 K \rceil$. In other words, a BT with k leaves and depth d has $d >= \lceil \log_2 K \rceil$ or $K <= 2^d$

Proof: Prove by induction that a tree of depth d can have at most, 2^d leaves.

Base: for d=0, there is 1 leaf.

Suppose true for d, consider tree of depth d+1.

BIH: x and y have at most 2^d leaves so whole tree has at most $2*2^d = 2^{d+1}$ leaves.

Now the shortest trees with K leaves must be "perfect" and their depth will be $\lceil \log_2 K \rceil$

So a tree with n! leaves has depth at least lg n!.

Notice that depth = the maximum number of tests one might have to perform.

So *any* sort algorithm takes $\Omega(n \mid g \mid n)$ comparisons.

Is there a way to sort without using binary comparisons?

Ternary comparisons, K-way comparisons.

The basic $\Omega(n \log n)$ result will still be true, because $\Omega(\log_2 x) = \Omega(\log_k x)$.

Useful speed-up heuristic: use your data as an index of an array.

Consider sorting tray of letters

Sorting tray of letters

```
if tray = "abbcabbdaf" count = \{3,4,1,1,0,1,0,\dots,0\} and new tray = "aaabbbbcdf"
```

Running time is $\Theta(26+\text{tray.size}())$, i.e. *linear*!

Why does this beat n log n?

- The operation count[tray[j]]++ is like a 26-way test; the outcome depends directly on the data.
- This is "cheating" because it won't work if the data range grows from 26 to 2³².
- Technique can still be useful can break up range into "buckets" and use mergesort on each bucket

A way to exploit the data-driven idea for large data spaces.

Idea: Sort the numbers by their *lowest* digit. Then sort them by the next lowest digit, being careful to break ties properly. Continue to highest digit.

456	7	34	18	0	1	9	80		2	009		109	
213	2	92	24	1		1	09			109	•	456	
45	6	87	72	1	2	20	09		2	132	19	908	
190	8	35	52	1	3	37	21		9	241	2	009	
345	6	2	3	2	3	35	21		3	297	2	132	
924	1		ŀ 5	6	2	<u>?</u> 1	32			456	3	297	
10	9	34	ŀ 5	6	S)2	41		3	456	34	456	
578	9	45	56	7		4	56		3	480	34	480	
329	7	32	29	7	3	34	56		3	521	3	521	
200	9	19	θO	8	4	ŀ5	67		4	567	4	567	
872	1	-	O	9	3	34	80		8	721	5	789	
352	4	57	8	9	5	57	89		5	789	8	721	
348	80	20	00	9	3	32	97		1	908	9:	241	
'23: Da	ita	Stri	10	 	es.			-					

90-723: Data Structures

and Algorithms for Information Processing

- Each sort must be stable
 The relative order of equal keys is preserved
- In this way, the work done for earlier bits is not "undone"

Informal Algorithm:

To sort items A[i] with value $0...2^{32}$ -1 (= INT_MAX)

- Create a table of 256 buckets.
- {For every A[i] put it in bucket A[i] mod 256.
- Take all the items from the buckets 0,..., 255 in a FIFO manner, re-packing them into A.}

- Repeat using A[i]/256 mod 256
- Repeat using A[i]/256² mod 256
- Repeat using A[i]/256³ mod 256
- This takes O(4*(256+A.length))

Radix Sort using Counts

The Queues can be avoided by using counts:

Let N= number of elements in array a

Array a is indexed from 1 to N

Let w = the number of bits in a[i]

Let m = number of bits examined per pass

Lecture 12: Sorting

Let $M = 2^m$ patterns to count

Radix Sort using Counts

The Queues can be avoided by using counts:

```
void RadixSort(int a[], int b[], int N) {
   int i, j, pass, count[M];
   for (pass=0; pass < (w/m); pass++) {
      for (j=0; j < M; j++) count[j] = 0;
      for (i=1; i <= N; i++)
            count[a[i].bits(pass*m, m)]++;
      for (j=1; j < M; j++)
            count[j] = count[j-1] + count[j];
      for (i=N; i >= 1; i--)
            b[count[a[i].bits(pass*m,m)]--] = a[i];
      for (i=1; i <= N; i++) a[i] = b[i];
}</pre>
```


Radix Sort using Queues

```
const int BucketCount = 256;
void RadixSort(vector<int> &A) {
 vector<queue<int> > Table(BucketCount);
 int passes = ceil(log(INT MAX)/log(BucketCount));
 int power = 1;
 for(int p=0; p<passes;p++) {</pre>
    int i;
    for(i=0; i<A.size(); i++) {
         int item = A[i];
         int bucket = (item/power) % BucketCount;
         Table[bucket].push(item);
    i = 0;
    for(int b=0; b<BucketCount; b++)</pre>
      while(!Table[b].empty()) {
         A[i++] = Table[b].front(); Table[b].pop();
    power *= BucketCount;
```


90-723: Data Structures and Algorithms for Information Processing

In general it takes time

 Θ (Passes*(NBuckets+A.length))

where Passes=
\[\log(INT_MAX)/\log(\text{NBuckets}) \rightarrow
\]

Suppose we have n 4 digit numbers to sort and 1 bucket for each digit.

Lecture 12: Sorting

Passes = $ceil(log_{10}(9999)/log_{10}(10)) = 4$

$$\Theta(4 * (10 + n))$$

It needs $\Theta(A.length)$ in extra space.

Next Time

 The next topic will be Quicksort, a very fast, practical, and widely used algorithm